
AVERAGED EQUATIONS OF RADIATION TRANSFER AND THEIR 

UTILIZATION IN THE SOLUTION OF GASDYNAMIC PROBLEMS 
PMM Vol. 34, N’4, 1970, pp. 706-721 

I. V. NEMCHINOV 
(Moscow) 

(Received March 27, 1970) 

Equations of radiative transfer were integrated (averaged) over angles and energies of 
quanta using the true directional profile and the true emission spectrum in each point 

of space. A multigroup system of averaged equations of the “back and forth” type was 
obtained (also including the equations of the spherical case) which was equivalent to 
the initial system of equations of transfer, i. e. this system leads to the same values of 

average group or integral intensity of radiation (for the instant of averaging). A method 
is proposed for utilization of this system simultaneously with equations of gasdynamics 

(dimensionless coefficients in averaged equations are retained, for example, for a given 
value of optical thickness in the intervals between averaging, then a recalculation is 

made). Even in the case of relatively frequent averaging, the laboriousness of solving 

nonsteady-state gasdynamic problems (and steady-state problems which are solved by 

the iteration or relaxation method) decreases sharply. The comparison of the dimension- 

less coefficients in the averaged equations provides an objective “automated” evaluation 
of the necessary frequency for carrying out the averaging. 

It is pointed out that this method can be generalized to the non-one-dimensional case, 
and also to the case where local thermodynamic equilibrium is not present. 

Particular attention is devoted to the problem of averaging the transfer of radiation 

from an external source which heats and vaporizes material. The effectiveness of the 
averaging method can be quite high because in such problems the heating processes 

develop (from gasdynamic point of view) quite slowly. Acoustic disturbances have 
time for multiple propagation through the relatively thin layer of the heated material. 

This results in slowly varying profiles of temperature anddensity. The spectrum and the 
directional profile of the source can differ substantially from the spectrum and the direc- 
tional profile of the characteristic emission of the material. Therefore, the averaging 

of the radiative transfer from the source is carried out separately from the averaging of 

the characteristic emission (generated in the heated medium). In many cases the char- 
acteristic emission is negligibly small in general. Then further simplifications are pos- 

sible and a strong analogy exists between the problems of action on material of radiation 

from a continuous spectrum and radiation which is monochromatic. 

1. For the case where the parameters of the material are constant on certain planes 
or spherical surfaces with a common center and where the scattering and the time of 

propagation of radiation through the heated or cooled volume are neglected, equations 
of radiative transfer have the following form fl]: 

8Jz i (Y - 1) (1 - II’) 8 J, 
I-17 / 2r dP 

= - k, (J, - Ii’,) (1.1) 

Here J, is the intensity of radiation increased at times and referred to the unit inter- 
val of energy of quanta (and not of frequencies, as it is usually done), r is Euler’s coor- 
dinate, Y = 1 and 3 in the plane and spherical cases, k, is the linear spectral absorp- 
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tion coefficient corrected for the forced emission, lo = cos 8, where 8 is the angle of 
intersection of the ray with the radius or the perpendicular to the planes with equal values 

of parameters, B, is the Planck function on ._ 
B, _ is G’S 

rt4 exp (e/T) - 1 ' s R,dE=sT4=B 
0 

(1.2) 

(a is the Stefan-Boltzmann constant, T is the temperature). 

On the boundary surface (plane or .:pi;ere) the radiation intensity from some external 
source (designated by the index “zero”) is given for all rays entering into the volume, 

i. e. for 0 < p < 1 or - 1 < l_~. < 0. For each value of lo the quantity J, is the 
same on the entire boundary surface. Then the radiation is characterized by a symmet- 
rical directional profile J, = Je(&, p, r, t) and we can utilize (1.1). 

In the plane case it is easy to write (1.1) in the integral form p - 41 

J,=J&xp(25) f- ;c n,(.C;,expi--+) dt,’ (1.3) 
3 

The spectral optical thickness z, is determined by the following expression : 
+ 

z, = S k, dr = [ x,7-(“-l)dm (xc = $) 
T” i 

Here x e is the spectral mass absorption coefficient, p is the density and in is the 
Lagrange mass coordinate. 

Equation (1.1) is linear with respect to J, . Therefore, in each point, J,,represents 

a superposition of a quantity proportional to the intensity of radiation of the source J,” 
(taking into account its reduction due to absorption from the boundary to the given point) 
and a quantity which is determined by the characteristic emission generated in the 

medium itself. This is clearly evident from (1.3). 
Having solved (1. l), or in the plane case (1.3), we find J ,in each point r for all p 

and we calculate the average characteristics of the radiation field : spectral unilateral 

flux density of radiation 1 0 n n 

(1.4) 

average (with respect to angles) spectral unilateral intensity of radiation, increased x 
times 

U,+ = f Jedp, U,- = i J, dp (1.5) 
-1 

group unilateral flux density of radiation 

qi’ = ( q,‘-tde 
El 

group average unilateral intensity of radiation 

Uif = [ U,* de c 
Et 

(1.6) 

(1.7) 

Here e, and Ed are the upper and lower limits of the i th group of quanta (for simpli- 
city of notation the index i has been left out in the case of a1 and e2 in (1.6) and(l.7). 
and will also be omitted in the following text). If the group consists of several subgroups 
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which are not in contact with each other, then the modification of (1.6) and (1.7). and 
also theequations presented below where integration with respect to e is encountered, 

are obvious. 
If e, = 0 and e2 = 00, i.e. integration is carried out over the entire spectrum, 

then q* and u*(without the index i) will be called integral unilateral flux densities 

and average intensities. 
The total (in both directions) spectral and integral flux densities and average inten- 

sities are determined in the following manner: (1.8) 

Q, = 9,+ + 4,, q = 2 (qif $ qi-), UC = u,+ + UC--, u = 2 ( ui+ $ UJ- 
We introduce a functionf characterizing the directional profile of the’iadiation 

*a+ = J, ] lJ,* (1.9) 

and a function characterizing its spectral composition in the i th group 

(Cp,‘)i = Us+ / Ui& (1.10) 

By virtue of (1.5) and (1.7) we have 
1 0 CI 

s $,‘dp= I, s q$-dp = 1, s (cp,f)$ = 1 (1.11) 
0 -1 Cl 

From (1.4), (1.5). (1.9) and (1.10) we obtain 

q,f = 2ce*u,* (1.12) 

Here c, is the unilateral spectral average (with respect to angle) cosine 

c,+ = ‘s qi,‘pap, 

0 

c, = 1 %F 4J (1.13) 
0 -1 

Integrating (1.12) with respect to e, we obtain 

qi* = z$=ui+ (1.14) 

here cf are group unilateral average cosines 
Cl 

q* = s cc* (qyqi de 
Cl 

(1.15) 

2. The equation which describes the energy change with respect to time for a unit 
mass due to expansion or contraction of the gas, and also due to energy supply as a result 
of absorption or due to energy losses as a result of emission of radiation, has the form 

$+&=j =xfr;, &[f;de (zJ=+) (2.1) 
i :I 

Here p is the pressure, v is the specific volume, p is the density, f e’r fi’ and f’ are 
the spectral, group and integral intensities of generation (f’ > 0) or losses (f’ < 0) 
of energy by a unft mass. From the equation of transfer we can obtain directly 

ft = 2x, (U,’ + u,- - 2z?,), ji == 2 ((x>C Ci” + (x)i_Ui_ - 2X,pBi) (2.2) 

Here Xi’ is Planck’s group coefficient of absorption 

(2.3) 
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For or = 0 and aa = co it transforms into the usual (in our terminology integral) 
Planck coefficient. Bi is the group flux density of the radiation for the black body, 
(~>i’ is the unilateral group coefficient of absorption 

If the spectrum cp& coincides with Plank’s spectrum (in the case of local tempera- 
ture T), then (x)$ = xip. If this is not the case, we talk about the distortion of the 

spectrum with respect to Plank’s spectrum and introduce a dimensionless coefficient 
which characterizes such distortion 

Q = (Q’/ ?ciP (2.5) 

From this 
fi' = 2XiP(qi+UiT f- ~l~-c'~- - 2Bi) 

It follows from (2.6) that only integral characteristics of the radiation field are 

required for gasdynamic calculations. We shall attempt to obtain equations which 
describe the change of just these quantities with respect to mass. 

3. The equation (1.1) is somewhat transformed 

a (pJ,r”-l 1 (Y - 1) 8(J, (i -pY) 
v-1 &. +-r = - k, (J, - BE) 

r aP 
(3.1) 

The equation (3.1) is integrated from p = - 1 to p = 0 and from p = 0 to 
p = 1. As a result we obtain 

In the derivation of (3.2) it was assumed that for /J -+ 0 the quantity J, is finite 
and that gf , the spectral unilateral coefficient of “sphericity”, is determined in the 

following manner : U,+gE" = FJ, or g,'=T'g,+ (fort p=O) (3.3) 
It characterizes the “efflux” and “influx” of radiation from one group (with the index 

“plus”) to another (with the index “minus”) and back. 

The reason for the appearance of this coefficient is that in the spherical (and cylind- 
rical) case for a fixed ray the angle 8 of its intersection with the radius changes all the 

time. This is actually reflected in (1.1). If the ray is directed toward the center (index 

minus), then the angle of intersection gradually decreases from 8 ---. x to 8 = n/2 @ 
increases from l.r = - 1 to ~1 = O), after this the ray falls into a group with the index 
plus (“it turns back”). 

A system of equations close to (3.2) was obtained by the author of [S] (he called it 

“a quasi-diffusion approximation”) by integration of the kinetic equation with respect 
to p from p = --1 to )I = 1. The second equation in [53 was obtained by means of the 
same integration but with preliminary multiplication by P. These equations contain as 
independent variables the total flux density of radiation qe and the total average inten- 

sity CT,, and not the corresponding unilateral quantities as in our case (in [5] the aver- 

aging of the kinetic equation was carried out with application to problems of neutron 
propagation. In this case scattering was taken into account. However, it is natural that 

the same considerations can be utilized for problems of propagation of radiation). 
Equations (3.2) differ from the ones found in [5], and are closer to the system of equa- 

tions of the “back and forth” type obtained earlier in the plane case by Schwarzschild 
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and Mustel’ and in the approximation of straight rays in [1- 41. In these approximations 
the form of the directional profile is prescribed in advance and does not change in the 
entire domain (which, of course, strictly speaking, is impossible with the exception of the 

black body case with complete equilibrium of material and radiation, where 9;+ = 
z--Q- = B, and qe = 0). Therefore, constant values are obtained for spectral and inte- 

gral average cosines c$ and c*, namely I/%, */3 and 1 (respectively). The system (3.2) 
obtained by us and also the quasi-diffusion approximation are exact in the sense that for 

true values of the average cosine and coefficients of sphericity which are found from the 

true directional profile, we obtain the same quantity Us as is obtained directly from 
the equation of transfer (1.1). 

It appears that system (3.2) is more convenient than the system of quasi-diffusion 
approximation because each of the equations contains only one of the sought functions 

uE+ or U,- which is important because the boundary conditions for them are given on 
different boundaries. Analogous averaging over angles within the limits of the half- 

space was carried out in the recently published papers [15, 161. 
We obtain a multigroup system of equations. We integrate (3.2) within the limits of 

each group a (C,% v,+r+r) 
I z 

+ 
(Y - 1) gi+ ui+ 

r”-1 ar r 
= - ((I&’ vi+ - kiPBi) (3.4) 

Here (k)i* is the linear average absorption coefficient, ktf is Planck’s linear absorp- 
tion coefficient, related to (x) $ and to Xi’ by the simple relationships 

(k)i’ = (x)~$, kiP = xip p (3.5) 

The group unilateral coefficient of sphericity is determined in the following manner: 

gi* = S’&+(‘P.+),& (3.6) 
El 

Using the distortion coefficients of Planck’s spectrum determined according to (2.Q 
and changing over to Lagrange mass coordinates, we obtain from (3.4) 

a (Cik Iyw) (v - 1) gif Uif 

am + Pr 
= - XiP (&+T$’ - Bi) (3.7) 

The obtained system of equations is exact in the sense that if in each point the true 

value of ci*, g$ and qi* is utilized, we obtain from (3.7) the same values Ui’ as 

from the initial equation of transfer (1.1). 
It is frequently the case that the characteristic emission in the volume under examin- 

ation is negligibly small in comparison to the radiation of the external source. In this 
connection the spectrum and the directional profile of radiation are determined by the 

spectrum and the directional profile of the source, at least near the boundary of the 
heated volume. The partition of radiation into groups according to energies of the quanta 
and the separate integration over the angles of radiation directed along the negative and 

positive r-axis is due to the desire to take into account as accurately as possible the 
spectral composition of radiation and its anisotropy. From the same point of view it is 
natural to bring up separate integration for the radiation of the source and the character- 

istic emission. 
The subscript zero will be used to designate quantities related to characteristic emis- 

sion. The quantity J,, will be determined from (1.1) for (.T ,)” = 0 . The quantity 
J E will be determined from the same equation, but for a value of B e = 0. III exactly 
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the same manner in the averaged equations the quantity U& will be determined from 

(3.2) for (U$ = 0 and the quantity u,+ will be determined from the same equation, 
but for a value of B, = 0. Finally, the quantities U$ will be found from (3.4) for 
(,@r = 0, and the quantities Ui* with Bi = 0. Relationships presented above which 

determine cE*, ci* etc., can also be used for quantities designated by the index zero; 
we present only the relationship which replaces (2.4) 

fi’ = 2 ((x,,): Uio* + (x)~+ lJi+ + (Xg)i- Ui,- + (X)i- lJi_ - 2X,’ Bi) (3.8) 

Averaged equations of transfer can be utilized for various purposes. The compact nota- 
tion greatly facilitates the written formulation of the gasdynamic problem and its qua- 
litative analysis. It is noted that certain general properties of a gasdynamic system of 

equations and a system of equations of transfer (formulation of boundary conditions, deter- 

mination of initial values, etc.) have already been examined by the author of [6] with 
the aidof multigroup averaged equations in the “back and forth” type. In this connection 

the method itself for obtaining the coefficients in the averaged equations was not refined 

and the work was limited to the plane case only. We note that practically the entire 

analysis carried out in [S], is also valid for the equations obtained here which were aver- 
aged in an exact manner (this includes also the spherical case). 

The averaged equations make it easier to search for self-similar solutions, etc. How- 
ever, the main thing is that by means of these equations it is possible to create an effec- 

tive method of calculation for gasdynamic problems in which the energy transfer is rea- 
lized through radiation of the continuous spectrum (*). 

At some moment of time t, let the distribution of temperature T(m) and of density 

p (m) be known. Aft er finding J, from (1.1). we calculate Ue* from (1.5) and deter- 
mine $f from (1.9). From (1.13) we find c$, from (3.3) and (1.7) we determine 

g$ and Uif. Further we determine (ve*)i from (l.lO), cif from (1.15), gi* from 

(3.6). (X)i* from (2.4) and Ili~ from (2.5). Utilizing now the dimensionless coeffi- 
cients g,$, $3 and TJ$ we shall solve the averaged equations of transfer (3.7) simul- 
taneously with the gasdynamic equations with these coefficients in the next moments of 

time. In this connection, naturally, the quantities xiP and Bi each time corresponds to 

new distributions of T and p . At some later moment of time (after a certain number of 
calculated layers) ts the entire averaging procedure is carried out again and we repeat 

from t, and t, the whole gasdynamic calculation with average coefficients obtained by 

interpolation between values calculated at moments t, and t, (recalculation). 
However, the question arises about the method of retaining of dimensionless coeffi- 

cients in the intervals between the moments of averaging. The point is that these coef- 
ficients are a function of two variables, while at the moment of averaging they can be 

found only as a function of one variable m. Only after repeated averaging it is possihle 
to determine their derivative with respect to time. Furthermore, it is not obvious in 
advance that the averaging will be effective (it is possible to perform it quite infrequent- 
ly) if we select as variables m and t themselves. By means of careful analysis of a con- 
crete problem and also as a result of accumulated experience in performing the averag- 
ing for the given type of problems it is possible to find suchcombinationsof independent 

*) During the discussion of this paper at the Institute of Applied Mathematics of the 
Academy of Sciences, USSR, it became known that closely similar ideas were developed 

by authors of [5, 15, 163. 
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variables for which the dimensionless coefficients will be primarily functions of only one 
variable and will have only weak dependence on the second variable. As one of such 

varlables we can point out Planck’s group optical thickness which is determined by the 

following relationship: m 

rip = $.Qr+-1)dm 
s (3.9) 
0 

It is natural that such a selection of the “major” variable is not unique. We can pro- 
pose other methods. This problem will be analyzed using an example where the charac- 
teristic emission of the medium can be neglected completely and where it is possible to 

limit oneself to the examination of equations of radiative transfer from the source. 

4, Let us examine the plane case. For simplicity it will be assumed that the source 

acts only from one side and the indices “plus” and “minus” are omitted. From (1.3) and 

(1.5) we obtain 

U~=“~~~:exP(-~)dp (4.1) 
0 

’ Here $‘e is the initial directional profile. Let the source be isotropic : I/I ,” = 1. 
In Fig. 1 the directional profile of radiation is shown for various optical thicknesses 

G from the boundary of the material on which the radiation falls. It is evident that a 

greater and greater role is played by straight rays (p = 1). The spectral values of the 

average intensity of radiation and of the average cosine vary with rC.in the following 
manner : 

lr, = lJ,OE, (T& q, = q,O 2% (G), CL = & (~,)l~, (G) (4.2) 
Here En(z) is an integral exponential function of the nth order p]. Starting from the 

value of this function at J: = 0 and the asymptotic expression at large CC, namely 

Kl (0) = (n - 1)-l, E, (3 = r-l exp (- X) (4.3) 
we can construct a simple approximate analytical expression for E, (x) for the entire 

range 0 < II: < 0 E,(X) = (n - 1 + X)-I exp (- 5) (4.4) 
A comparison of (4.4) with exact values shows that the difference does not exceed 

20% for n = 2 and decreases with increas- 
% ing n and also with z 3 0 and LC -+ 00. 

It is convenient to represent tables of 
E,,(z) in the form of relatively small cor- 

rections to (4.4). From (4.2) and (4.4) we 

obtain that the average cosine varies with 
the spectral optical thickness in approxi- 
mately the following manner: 

ce = (G. + 1) / (re + 2) (4.5) 

It is evident that the average cosine c, 
will be smooth and a relatively weakly 

varying function of the spectral optical 
density re. This is also true for other initial 

Fig. 1 
directional profiles of the source qeO, even 
though in this case it is not possible to obtain 

equally simple expressions for qe(Te) as in (4.2). If the directional profile SC0 of the 
source is invariant with time, then the relation c,(r,) is also invariable. 
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Having computed the radiation field at some instant, we can determine this relation- 
ship and subsequently find Q,from Eq. (3.4) averaged over angles. This equation in the 

present case (taking into account only the transfer of radiation from the source, v = 1) 

takes the form 
aq, 

CE F = - q,, 
E 

qc=q.%!xp(-~-$) 

0 
(4.0) 

Here the relationship (1.12) was taken into account. 

A comparison of this equation with the first term of (1.3) shows that the problem of 

action of radiation from an undirected source is reduced to the problem of action from 
a directed source, however, in each point the angle of intersection of the ray and the I- 

axis is varied in a predetermined manner. 

As far as the spherical case is concerned, the directional profile in each point is deter- 

mined not only by the initial profile 9,“ and the quantity r,, but also by the radius r. 
itself. However, in certain problems, for example action of radiation on the surface of 

a sphere, its evaporation, and motion of vapors, heated by radiation, away from the eva- 

porating sphere, a quasi-steady-state mode can arise v], where all parameters, and 
consequently also fc, depend only on the radius r. Thus, the possibility of generalizing 
the problem n] to the case of the continuous spectrum is also obvious. The closer the 
motion is to quasi-steady-state, the less frequently will it be necessary to perform the 

averaging in the non-steady-state problem (this method can be utilized also in steady- 

state problems which are solved by the iteration or relaxation method). 

The equation of transfer (4.6) averaged over the energies of the quanta, assumes the 
form 

ci- dm zcz - (+fq,-‘- (4.7) 

(It represents a particular case of (3.7).) On the surface of the irradiated substance the 
radiation spectrum is known. It coincides with the spectrum of the source (cpEo)i. There- 

fore, for all temperatures and densities it is possible to determine the surface coefficient 

of absorption e2 n 

(4.8) 

Having solved the transfer equation and knowing the spectrum in ail points, it is pos- 
sible to determine a coefficient which takes into account the distortion of such a spect- 
rum in comparison to the initial spectrum 

Ei” = CX>il (%>i (4.9) 

The indices plus or minus are omitted because we are examining a unilateral source. 

Utilizing (4.9), we write instead of (4.7) 

Ci 2 = - giOqiy a~ zz 1 (x>i” drrl (4.10) 
2 0 

Sometimes it is inconvenient to use the surface average because it takes into account 
the absorption of the kind of quanta which have small penetrating capability into the 
material, carry a small amount of energy and are therefore not characteristic for the 
problem as a whole. Then it is possible to utilize a “supporting” coefficient of absorp- 

tion x0 = X((E)‘) for the average energy of the quanta of the source 

(4.11) 
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In a corresponding manner it is easy to change the determination of Ei” and tif 

In many cases the spectrum of the source is constant (in spite of changes in flux den- 

sity). This applies to a source of Planck’s spectrum which is at constant temperature but 
has finite dimensions and approaches the irradiated surface (an exploding laboratory 

source [S, 9]- a shock wave which propagates through a tube filled with the working 
gas ; due to the change of the geometric factor the flow density increases continuously). 

This applies also to a source radiating in the Rayleigh-Jeans region at constant tempe- 

rature. The spectrum of this source has the form 

'p," = 4 (E / E,)3 &,,,-I (4.12) 

Here &,is the maximum energy of quanta from the source. Other situations are also 
possible where the spectrum cp Co is not changed. 

Even in this case it is not possible to make up in advance tables of distortion coeffi- 
cients Ei” and of group average cosines ci as functions of group optical thickness ri’. 

The point is that for each energy of quanta E , the value of the spectral coefficient of 

absorption x, in the general case depends on temperature T and density p in its own 

way and not in the same way as x,depends on T and p for another energy of quanta, 
and also not in the same way as (x&” or II ((E)‘{). 

6. Within the limits of the given group let x ,depend on T and p in the same (even 

though completely arbitrary) manner 

x,=Ki(E)Gi(T7 P) (5.1) 
Then we have 

or 

(x>: = (K): Giy (K)i” = 5 Ki Cc) (cP,“)i de (5.2) 
El 

XC = X((E):)= K((&)t)Gi= KcGi (5.3) 
In the case of condition (5.1) the group optical thickness is proportional to the spec- 

tral optical thickness for any distribution of temperature and density 

‘ti = K,"\G,(T, p)dm, 
Ki (6) 

i Te =Ki" 

It is apparent that in this case in some point the radiation spectrum, which is distorted 
with respect to the spectrum of the source because of absorption in layers of material 

lying “above” this point, depends only on ‘ti and a. The coefficients in averaged equa- 

tions obtained by means of integration with respect to E depend only on zi (for a given 
spectrum of the source). Tables of the dependence of Ei and ci on 7i can be composed 
in advance. 

We call attention to the fact that here it is notrequired for functions Ki and Gi them- 
selves to have a special form of any kind. It is also not required for these functions to 

be the same in different groups. Thus, for one group, with increasing T the transparency 

may increase, while for another it decreases. However, this must occur for the entire 

group as a whole. We note that fulfillment of condition (5.1) indicates the same form 
of X‘(E) inside the given group for all temperatures and densities. This requirement is 

satisfied for example by a power and piecewise power form of x (E) for constant powers 
and for invariable jumps in coefficients of absorption on the boundaries of subgroups. 
In jumps on the boundaries of the groups the absorption coefficients in this connection 
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vary in an arbitrary manner. 
The situation which is close to the described limiting case can arise in reality. For 

the case of completely ionized gas [4] in the short wave part (E > 7’) of the spectrum 

x _ E-~, while in the long wave part (e (( T) we have x _ a+. The same is true also 

Fig. 2 

for continuous absorption of “soft” radiation in gas with single and multiple ionization. 
This is also true for quite hard radiation which is absorbed by the material due to the 

Fig. 4 

photo effect from deep shells of the 
atom which are not involved in ioni- 

zation. In this case the absorption coef- 

ficient does not depend at all on T 

and p over a quite wide range of these 

parameters. Therefore it is possible to 
formulate only one group with arbitrary 

variation of x (8). 
In the general case with complex 

dependence of x (e, T, p) it would 
appear that a large number of groups 

is necessary. 
However, first of all, adjoining inter- 

vals of the spectrum (subgroups) must 
not necessarily enter into the given 

group. 
Secondly, the requirement for the law 

ofvariation of x with E or T and p to 

be the same, must not necessarily be 

satisfied for the entire range of these 
parameters, but only for the most essen- 

tial region (for example, for the most important parts of the spectrum which are deter- 
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mined from energetic or some other additional considerations). 
Thirdly, the groups themselves can be formulated in such a manner that the relation- 

ship (5.1) is satisfied as well as possible. 
In Figs.2 and 4 the behavior of continuous absorption coefficients of aluminum vapors 

is shown for several temperatures (the numbers correspond to T in 103’K) and densities 
(6 is the relative density ; 6 = p / pr,; for 6 = 1 the number of atoms and ions is equal 

to the Loschmidt number, for Al pL = 1.20 . 10-3g/cm3). At the request of the author 
the calculation was made by V. A. Onishchuk using the method of Burgess and Seaton 
PO] (the ionized composition was calculated according to Saha’s system of equations [4] 

by the author and L. P. Markelova). 
Here only values of 31 are presented in the range of E to 25eV. which corresponds to 

the energy limit of quanta in an explosive source [S, 91 using helium as the working gas 
(helium has the highest ionization potential (24.6 eV) of all noble gases). Theoretical 
estimates [4] and experiments [9] show that the maximum temperature for which the 

screening effect of the shock front still arises is approximately 8 to 9eV (in this connec- 

tion the radiation flux density coming from the shock front reaches nearly 150 mwatt/cm2). 

Consequently, by means of such a source it is possible to heat the vapors up to 80, OOO’K. 
It is evident from Figs.2 to 4 that in the examined range of T and e the number of 

groups is relatively small (for calculations which do not require great accuracy, we can 
use 3 to 4 groups). If lines are taken into consideration, the situation becomes more 

complicated. But here also we can use the same considerations and separate out the 

lines with the same contours pl]. Formally the method is applicable for arbitrary depen- 
dence of H. on E, T and p. Furthermore, there is no doubt about its effectiveness in the 

majority of cases. In fact, “the additional work” of computing I@, c$, g$, cp$, (SO*, 
~1, g,?, qt or @ does not exceed greatly in volume the computation (by means of 

integrating JJ of quantities U$ and U’ and it is less than the work of calculating 
J E’ Therefore a saving in computational work arises even for quite frequent averaging 
through one computational layer. If, however, the averaging is carried out infrequently, 
then the simplification achieved is quite substantial and becomes even essential, because 

the solution of many nonsteady-state problems cannot be accomplished by direct inte- 

gration of transfer equations, even with application of modem computational techniques. 

The effectiveness of the indicated method for many problems (for example, the interac- 
tion of powerful radiation fluxes with the surface of a solid body and the layer of vapor 

which is formed) is enhanced by the circumstance that from a gasdynamic point of view 

the processes wnich take place are slow: during tile period of interaction the sonic per- 
turbations have time for multiple propagation through the heated layer. This results in 
a relatively slowl;7 changing temperature and deTsity profile. 

It should be noted that the described method can be generalized to the non-one- 

dimensional case and also to the case where local thermodynamic equilibrium is absent. 

8. Now we shall examine the case where (S. 1) is satisfied with sufficient accuracy 
in the entire range of E, T and p, to be investigated. 

If the radiation spectmm of the source is unchanged, it is sufficient to carry out the 

averaging of equations only once; if the spectrum changes slowly, it is sufficient to carry 
out the averaging infrequently and in the intervening moments of time it is possible to 
use interpolation for coefficients c and E. For an unchanging spectrum the problem of 
radiation action from a source of continuous spectrum will be reduced to the problem 
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of action from several (as far as the number of groups is concerned) equivalent lasers or 
one (in the case of integration over the entire spectrum) equivalent laser. These lasers 
will behave as if the energy of quanta changes in the process of propagation (in a man- 
ner known in advance). 

Let the coefficient of absorption be a power function 

K(E) = K(&l&,)” (6.1) 

Then we shall have for Planck’s spectrum of the source 

(x)“=%~=~xTl.(s-~)j(s-~) (6.2) 

where l’(z) is the gamma function, 5 (z) is the Riemann zeta function and Wris the 
coefficient of absorption for E = T. 

For the Rayleigh-Jeans spectrum (4.12) we shall have 

(x)” = 3x, / (3 - s) (6.3) 

The average energy of quanta of Planck’s spectrum (&)P = 4.037T and for (4.X), 

(&)O = 3/a&,. It is therefore apparent that in one and the other case there is noticeable 

deviation of the surface average coefficient of absorption from X((E)‘). This last quan- 
tity or coefficient of absorption, averaged over the optical thickness T of the order of 

unity, corresponds better to the value of (x) in that region where the principal part of 

the energy of the source is radiated. 
In Fig. 5 the dependence of g = (x) / X((E)‘) on r is shown for the case of integra- 

tion over the entire spectrum. Initially the spectrum is a Planck’s spectrum. The dashed 
line indicates the relationship for the case where the initial spectrum is “shelf-like” 

~ (PC= I/(%-%), &,<E<hn (6.4) 

The last case qualitatively demonstrates the char- 

acter of the spectrum of a layer of multiply ionized 

plasma which was heated by laser radiation and which 

emits radiation from the volume. In this case 

(&j’ =: ‘/a(&, -+- Ea). 
The optical thickness is determined here in the 

following manner: 
77, 

Fig. 5 
It is easy to present the solution of the averaged 

equation of transfer in the form which is analogous to the case of monochromatic direc- 

ted radiation 
4 = (lo esp (- Te), a, = \ 74 dr (6.6) 

0 

Here Z, is the effective optical thickness, q” is the radiation flux density of the source. 
It follows from Fig. 5 that the relationship g(r) does not show strong differences for 

substantially different spectra (Planck’s spectra with a sharply defined maximum and 

shelf-like spectra without any maximum at all). 
This gives rise to the hope that in other cases also (not only for the condition when 

(6.1) is satisfied) a smooth change in the shape of the spectrum from the source will 
not lead to a sharp change in the relationship E(r) and that it will be necessary to 
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perform the averaging quite infrequently. 
It also follows from Fig. 5 that for different (but qualitatively same) relationships X(E), 

namely for condition (6.1) in the case of s = 2 and s = 3, the relationship g(r) does 
nor change too strongly. Calculations according to (6.6) with utilization of relationships 
E(T)? represented in graphical form in Fig. 5, show that for ‘G Z 0.5 the flux density 
for Lht: source of continuous spectrum (Planck’s or s:lelf-like) for various s is approxi- 
mately equal to Lhe same quantity for a monoci:roma:ic rource (s = 0). In addition 

g z 1 in this reginll, i.e. t~:e irlensity of energy release is also approximately equal 

f-=-2& = f $x0 exp (- T,) (6.7) 

We note rhat tFic principal part of the radiation energy is liberated in :his very region, 

For making rough initial estimates of magnitudes ot parameters of a gas which is 

heated by a source of col,tjnuous spectrum the application of rile “equivalency”principle 

ca~i he recommended. Tk*is means that approximate and self.-similar solutions of an,tlo-- 

gous problems on the action of a monochromatic radiation source (equivalent “laser”j 

Fig. 6 

are used. For example, methods and programs for 
numerical soiution oi such nonsteady-state prob- 

lems are described in [6, 7, 12, 141. In this con- 
nection analytical or tabulated relationships 
x (Q, T, p), wuere eg is the radiation energy of 

the monocr;romatlc source. must be replaced by 

x (C&Y, T, pj or by x1,, ( T, p) , which is the coef- 
ficient of absorption averaged over such an opti- 

cal thickness that the radiation flux density 4 = 
= 112 (To. 

In Fig.6 the dependence of x,/~ (cm2/g) on 
temperature 2’ (ev) and the relative density 

6 = p /‘p, is shown for aluminum vapor. In this 

connection relationships y. (E, r, p), which for 

some T and p were presented in Figs. 3-4, were 

averaged. The source spectrum was assumed to 
be a Planck spectrum at ? = 8 eV and “cut off” 

as a result of absorption ahead of the front of the 
radiating shock wave at E = 24.6 eV (a helium 

explosive source mentioned above). 
Of course, when t (T) is replaced by E = 1 , 

details of distribution of the released energy over 

the thickness of the heated material are represented inadequately, hut many integral 
characteristics are determined correctly. In particular, tiris applies to the value of the 
average pressure in the layer of gas which is heated by radiation and which is expanding. 

In paper [14] the author examined the self-similar problem of motion of a gas layer 
of constant mass which is heated continuously by radiation for the case where the inten- 

sity of energy release can he described hy a function of the form 

f = f”(Y(m) (6.8) 

Ler x he independent of e and E, , let the radiation spectrum of the source be invariable 
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with time. Then the characteristic mass of the heated layer of gas will not depend on 
its heating and motion and will remain constant. In this case equation (6. 8) is fulfilled, 

here f” = gono, F (z) = ?-% exp [- z 
c (r) 

(t)] c 7 T = x’fn (6.9) 

Let the radiation fall on the material from vacuum : p = 0 for m = 0. For the case 
9’ = COnst it follows from the solution of the self-similar problem that the pressure on 

the fixed surface which forms the boundary of the heated gas in the point 111 = I!/.,, 

(total mass of the gas) is determined in the following manner: 

po = ( “$;;;$ )“P (M), M = nom0 (6.10) 

The adiabatic exponent y is assumed to be constant, J!l is the dimensionless mass of 

the heated layer. In this case the mass coincides with the optical thickness of the layer. 

Fig. 7 

The value of the dimensionless pressure P(nf) 
is found from the solution of the problem 

P $f = F (.t); P=O, z=o 

dp = (I 
dz ’ 

T = nom0 = $1 (6.11) 

In Fig. 7 results are presented for the solution 
of this equation for the case where C(T) is a 

function shown in Fig. 5, i.e. for Planck’s spect- 

rum and a power dependence of X(E). For sim- 

plicity we limit ourselves here to the case of 
c = 1. The results for a shelf-like spectrum 

(6.4) are very close to the results of Planck’s 
spectrum. and are therefore not shown in Fig. 7. 

It is evident that values of P(M) for s = 2 
and s = 3 do not differ from each other strongly 
Even values for the case s = 0 (monochroma- 

. 

tic source or constant coefficient of absorption) obey a simple exponential law of energy 

release. This result can be easily understood on the basis of the following. 
The solution of (6.11) can be presented in the form indicated in n4] 

P(M)=h&fF(r)dr 
0 

(6.12) 

If we set h = 1, this will correspond to the absence of predistribution of energy re- 
leased in the given particle of material in the process of hydrodynamic motion. For 
uniform energy release with respect to mass 3\ = a,, = Jfrn v 0.798. For other 

cases h can be found from solution of (6.11). We point out that the difference between 
h and &usually is not large (Fig. 7). It follows from (6.12) that the value P (and p”) 
is determined by both the quantity of released energy and the mass of layers of material 
in which such energy release takes place. It follows from Fig. 5 that intensive energy 
release takes place at the surface (E > I), but it occurs in a layer of small mass 
(T < i, m < 1 / x”). In deep layers of sufficiently great mass (.c > 1, m. > l/x”) 
little energy is released. Therefore a significant part of the impulse is generated in 
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layers 7 = 1, where (x> z x0 and 5 ~1. 

In problems where it is required to determine the magnitude of pressure, it is necessary 
to take into account as accurately as possible those parts of the spectrum in which the 
quanta have sufficiently great penetrating capability, i. e. where the coefficient of 

absorption is small. The situation here is exactly opposite to problems on determination 
of radiation intensity emitted by a unit of volume, where the major role is usually played 

by those regions of spectra for which the coefficient of absorption is sufficiently high. 
Analogous conclusions were reached by the author of 1133 in the analysis of the Self- 

similar problem of expansion of a gas heated by radiation with a continuous spectrum 

in the case where x is a power function of e and p. This problem represents the gene- 

ralization to the case of continuous spectrum, of problem [12] on propagation of a self- 
consistent wave of expansion and energy release through the medium which is heated by 

radiation from a monochromatic source. We note that in general for the case where(5.1) 

is satisfied and the spectrum remains invariant, all self-similar solutions on heating of 
the gas by monochromatic radiation have an analog (in any case formally) to the case 

of heating by a source with a continuous spectrum (in this connection, of course, the same 

additional requirements are made, for example, power form of x (e, P) and y =; const). 
Realistically, the conditions of self-similarity usually are not satisfied completely (the 

adiabatic exponent y is not constant, the absorption coefficient cannot be represented as 

a power function of e. and p over the entire range of variation of these parameters etc.). 
However, the motion of the material frequently occurs in regimes which are close to self- 

similar. Consequently, it is required for such cases to perform the averaging quite infre- 
quently, because in the self-similar problem the spectrum of radiation, the directional 
profile and with them the average cosines and the coefficients of distortion depend only 
on the self-similarity variable. 

The author thanks V. A. Onishchuk for results of calculations made available by him 
on absorption coefficients of aluminum vapors. 
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The equations of conservation of mass and momentum are considered for a fluid disper- 

sing medium with suspended particles (the dispersible phase) along an arbitrary discon- 

tinuity surface of a disperse system. Conditions binding the velocity, pressure and con- 

centration jumps are derived, and a model of surface tension at such surface is suggested, 
The coefficient of surface tension is dependent on the interrelation between the densities 

of phases, size of the dispersed phase particles, as well as on other parameters. 
The problem of stability of the horizontal surface of a concentration discontinuity is 

solved. It is shown that, when a suspended layer is above the discontinuity surface, this 
surface is stable with respect to perturbations of sufficiently small wave length. The 

critical wave length, which defines the limit conditions of the onset of piston type fluid- 
ization, substantially depends on the effective surface tension. The upper free surface 
of the suspended layer remains, as expected, stable relative to perturbations of any wave 
length. The obtained results are in agreement with available experimental data. 

A number of problems of mechanics of disperse systems reduce to the investigation 
of discontinuity surfaces. One of the most important among these is the determination 

of conditions for the occurrence of piston type fluidization which disrupts in the system 
the regular pattern of technological processes fl. 21. The piston mode implies a sharp 
disruption of the suspended layer homogeneity, and can only be observed in sufficiently 
narrow tubes. It is characterized by a vertical stratification of a two-phase system into 


